

How to Screw Up DevOps:
A Field Guide

WHITE PAPER

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 2 of 11

Table of Contents
How to Screw Up DevOps – A Field Guide .. 3

Executive Summary ... 3

Technology Mistakes .. 3

Mistake #1: Baking Cupcakes ... 3

Mistake #2: Managing Server #17 ... 4

Mistake #3: Using Scissors ... 4

Mistake #4: Fly Fishing ... 5

Mistake #5: Showcase Showdown ... 6

Process Mistakes ... 6

Mistake #6: Perfection ... 6

Mistake #7: Misjudging the Finish Line .. 7

People Mistakes .. 8

Mistake #8: Forgetting the Hate .. 8

Mistake #9: Three Pizzas .. 9

Mistake #10: Working .. 10

Summary ... 11

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 3 of 11

How to Screw Up DevOps – A Field Guide

Executive Summary
There are many terrific sources outlining keys to successful DevOps adoption. Knowing what to do and

what steps to take in your drive to DevOps is key. But knowing what to avoid in your DevOps journey is

essential. Making these mistakes can ruin your results and convince managers and colleagues that

"DevOps just doesn't work here."

This whitepaper addresses specific DevOps mistakes, how to avoid them, and how to recover from

them.

Technology Mistakes

Mistake #1: Baking Cupcakes

A relatively new class of technology mistakes that many teams

make is to over rely on Desired State Configuration, also known

as DSC. Perhaps today’s IT teams grew up watching too much

“Star Trek: The Next Generation”, taking to heart Captain

Picard’s frequent command to “make it so”. Working towards

the end state, your desired state, is an enticing and logical

sounding proposition. Focusing on the desired state can be a

major time saver, especially under conditions where

1) the person or system that is granting your wish for a certain

end result already knows the full process of achieving your goal

(of baking and decorating a cupcake in our example) and

2) the desired state is truly “set” with few anticipated

modifications.

But desired states aren’t enough in and of themselves in more

complex IT systems. They almost always need to be

orchestrated to reach the final goal. An orchestrated states

effort runs more along the lines of: “I need a white cupcake

with pink frosting at the same time as a bowl of orange punch,

before the time of the birthday party, but after the house

cleaning. Also, yellow balloons.” Real-life IT infrastructure

requires at least this level of complexity and timing.

DSC (Desired State
Configuration)

THIS IS WHAT I
WANT.

MAKE IT SO.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 4 of 11

Unlike a cupcake, which has an end (baked and decorated) state, IT systems are reviewed, revised,

approved, updated, upgraded, changed and sometimes even rolled back. They are never truly “baked”.

Imagine ‘unbaking’ that cupcake and then adjusting ratios of ingredients and baking time. While DSC is

helpful, it is not enough in and of itself. The best DevOps solutions consider both transitory states and

final states as well as the interactions between them.

Mistake #2: Managing Server #17

Servers don’t matter. Applications matter. Customers and CIOs care that applications such as

ecommerce, flight reservations, insurance quotes or even games are working properly. Customers

interact with and do business with organizations because of their applications, not their servers.

As those applications improve and address more customer needs, they also become more and more

complex over time. An organization may have 10 to 12 critical applications that depend on 400

additional applications to accomplish their tasks. So it is puzzling that even though IT and consumers are

moving to a very application-centric world, many DevOps solutions still take a server-centric approach.

When managing complex applications (especially with the cloud involved), the underlying servers should

be immaterial. Those servers are a means to an end to provide processing which powers applications.

Consider: Does the CIO actually care about what’s going on with server number 17? Or do they care that

the ecommerce application is performing well on Black Friday?

In addition to asking these Server-Centric
Questions:

Also ask these Application-Centric Questions:

 What’s going on with this server?

 What’s going on with this application?

 What steps do I take to make a change to
this application on this server?

 How does changing my application affect
the larger ecosystem?

 What are the configurations of this
server?

 What are the configurations of this
application across the servers on which
it’s running?

In a one-to-one, app to server world, the server became a stand-in for the application. If the server was

having problems, the app was having problems. So the focus was naturally on server management. But

in a virtualized world, continuing to focus our DevOps conversations and tool selection only on server

management and server performance is a mistake. DevOps teams need to stop solving problems as if

they are always working with a set number of physical servers that have only one application running on

them. Instead they need to reorient their thinking and their systems management tools to reflect the

reality of a one-to-many world: one application driven by many physical, virtualized and cloud servers.

Mistake #3: Using Scissors

A critical DevOps mistake is to repurpose a tool that was built and optimized for a different use case, to

solve a completely different problem. For example, IT Ops may have purchased an application build

automation solution many years ago and now they need to automate the deployment of those builds

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 5 of 11

from Development to Production. Their smart, well-intentioned engineer says it’s no problem to add

deployment to your current solution – “all it requires is adding some deployment scripts and giving

access to other teams.” In a similar vein, companies have a great server configuration management tool,

and now they need to manage application configurations. And again, that well-intentioned engineer

says it’s no problem to add application configuration management to your current server management

solution – “all it requires is some coding to have it manage application configurations and middleware.”

Scissors are great…

But sometimes you need a hammer

This can be a big mistake because the

tool has now been repurposed and

overextended to attempt to address

a specific task beyond its scope. This

1) allows more users into the tool (all

with different objectives and skill

levels) thereby potentially

compromising security and 2) makes

the tool much harder to maintain,

because more and more custom

scripts will be needed to extend it.

Also, the further the engineer goes down the modification path the more they realize the tool doesn’t

suit everyone’s needs, and a three month project soon turns into two years of work going back and forth

between balancing needs and changes for all the different teams, reports, and audit-trails now required

by a single solution. This eventually turns the tool into a slow “spaghettified” silo that no one wants to

use.

If you’ve adopted a commercially available solution to help solve a specific DevOps technology problem

and you’re looking to extend it, look up the tool’s advertised features, capabilities, and problems it

solves. If the new problem you’re trying to solve isn’t listed, the tool isn’t focused on it. Use your current

tool for what it’s intended, and look for another solution to solve your current problem.

You will be more efficient if you have many tools that do exactly what they’re meant to do and have

them all coordinating between each other, as opposed to trying to kludge everything into one tool and

rendering it useless.

Mistake #4: Fly Fishing

A husband buys “his and hers” fishing poles, tackle sets and a fly fishing vacation as an “anniversary

gift”. Nice try. His wife doesn’t fish and doesn’t want to learn. This same scenario plays out in the IT and

DevOps world repeatedly. One team wants a tool and then buys that tool. Then they introduce it to their

counterparts and call it a “DevOps” tool – because that’s the trendy word of the day. Many tools will

naturally be a bit more useful to either Dev or Ops. That is understandable. But if that tool becomes a

new burden to one of the teams, requiring extra work or even an additional “source of truth”, then it is

destined to fail as a cross-team tool.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 6 of 11

At the very least, a DevOps solution should do no harm to any team. And a true DevOps solution will

appeal to Dev and Ops - and ideally to Security as well. If their daily routine will be impacted by the new

“DevOps” tool, getting early buy-in from affected teams is key. Otherwise it will be extremely hard to

get the other team to adopt the solution and it will never realize its full potential.

Mistake #5: Showcase Showdown

Enabling the technology side of DevOps by implementing multiple open automation frameworks is like

winning a showcase on the Price Is Right. You win! New toys! When you first win you’re so excited about

your new Jet Ski and hot tub. Then the items get delivered... You realize you need to get the Jet Ski

registered and pay insurance on it, you also have to somehow move the hot tub from your curb to the

backyard. The IT world calls this “implementation”. The hot tub doesn’t quite fit where you wanted to

put it, so now you are stuck with an unintended, unbudgeted home renovation project. Not to mention

the upkeep on the hot tub over time.

The same thing applies to implementing automation frameworks. Each automation framework is exactly

that – a framework. Who writes and maintains all the scripts that make the framework useful? At this

point maintaining your framework will be similar to maintaining a homegrown or open-source tool with

no support. What happens when the person who wrote the scripts goes on vacation and something goes

wrong? What happens when they move on?

Look for solutions that are more than just automation frameworks. Consider:

1) Does the “solution” rely on community or custom scripts?

2) Does the “solution” place the burden of security and compliance on the diligence of the team?

3) Does the “solution” require extensive tribal knowledge to work properly?

The common DevOps trap is settling for an automation framework when you actually need a solution.

While frameworks may appear to be more “flexible”, robust DevOps solutions eliminate the wasted time

in writing and maintaining scripts, responding to fire drills, recovering from outages or picking up the

pieces after key personnel leave the company.

Process Mistakes

Mistake #6: Perfection

DevOps teams are constantly improving software release and tackling new challenges. Once they have

prioritized which problem they are trying to solve, they begin to evaluate the best tools to solve the

problem. One of the first decisions is whether to build the tool in house or look for a third party solution.

Either way, the first step is to build a list of requirements. Requirements lists can be ten pages or more –

big excel spreadsheets with multiple tabs and hundreds of lines. Sometimes this may be necessary, but

more often than not at least a few of these line items are “nice-to-haves-in-the-future-maybe”. Since

each requirement likely adds time and costs, every requirement should be scrutinized to verify just how

necessary it is.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 7 of 11

For instance, in DevOps projects a common requirement is that “the tool must integrate with our

Configuration Management Data Base (CMDB)”. In the verification process, the most common answer is

“well, we’re not there yet, but we’ve been working on getting our CMDB set up for multiple years and

we want to make sure you have a built-in integration to it.” Future proofing is admirable but it has its

limits. It is a mistake to build your DevOps plans around an expensive and complex requirement that is

not going to happen any time soon. Instead of focusing on a unified CMDB, focus on what a CMDB

would give you. So here are some good questions to ask at this point: What kind of information would

you like to put in the CMDB? What information are you already storing in your CMDB that you would

like this tool to access? If the answer is murky, consider dropping this requirement.

The point here is to avoid the all-too-common DevOps mistake of constraining your selection based on

nice-to-haves or futures that may never happen. Perfect becomes the enemy of the good. Vendors will

waste their time and yours on perceived constraints. Costs will grow and timelines will unnecessarily

expand. Whether the ‘requirement’ in question is a CMDB or another constraint, it is essential to avoid

confusing the means-to-the-end and the end goal.

Mistake #7: Misjudging the Finish Line

DevOps and IT Automation veterans are often looking for ways to move complex, multi-tier applications

from Development to Production. When surveying teams about their deployment pipeline, it is often

described that “the application moves from Development, through Test/QA, into the Pre-Production

environment, and then ultimately Production.” More than 80% of the time no one ever mentions a Post-

Production environment. This is puzzling because most IT organizations still treat Pre-Production as a

sandbox. It is often directly accessible to developers, QA, and anyone else who needs to test a change.

When this is the case, undoubtedly a configuration or application gets “tested” or tweaked in Pre-

Production. This makes it impossible to reliably compare the applications and configurations running in

Production against the Pre-Production environment.

If you are using your Pre-Production environment correctly,

you may not need a dedicated Post-Production

environment. But, ask yourself – is Pre-Production

completely hands off? Who has access to Pre-Production?

Does Pre-Production always look identical to Production? If

not, a dedicated Post-Production environment is needed as

a required step in your DevOps pipeline. Also, adopt

solutions that allow you to easily maintain your Post-

Production environment (server configurations, middleware

configurations, and deployed applications), compare

between Post-Production and Production environments to

more easily remediate Production failures, and secure the

Post-Production environment so only necessary individuals

have access.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 8 of 11

The Post-Production environment is too important to leave to chance or to take for granted. Misjudging

the finish line is a common but preventable way to screw up DevOps.

People Mistakes

Mistake #8: Forgetting the Hate

Analysis paralysis can undermine your DevOps goals. Decision processes that meander and attempt to

accommodate too many inputs are destined to sap team energy. If there are multiple paths to achieve

your goal, you can get stuck in a doom-loop of no action.

As a case in point, the OrcaConfig team was having a design meeting to

discuss how to implement a new design feature. Each talented engineer

had their own idea of how it should be done. After hours of tediously

debating the merits of each approach the conversation still sounded like

this: “Well I like this part of option two and that part of option three, but I

also kind of like option one.”

Finally to break the logjam, a team member stood up and asked everyone

“which option do you hate the most?” This was a much easier question to

answer, and thus the Hate Matrix was born.

“the Hate
Matrix

was born”

Asking a colleague what they “hate” is the faster way to eliminate options and get to a decision,

especially if more than three options are involved, and more than two people are involved in the

decision making. For some unknown reason (wink), people of the IT world more easily identify

something they dislike and instantly become more decisive. Teams can either fight this mentality or

relish it, work the way their brains are thinking at that moment, and make decisions faster. An initial

concern was that some coworkers would find the Hate Matrix insulting or counterintuitive, but just days

after its inception a colleague brought in a dedicated “hate board”. Now anytime the OrcaConfig team

has a meeting that results in a stalemate, one or more peers suggest doing a quick Hate Matrix.

How the Hate Matrix works – Each option up for debate is written on the left hand side of the white

board. Each decision maker’s name is at the top of the white board. Start with one decision maker and

ask them – “which option do you hate the most?” They will probably answer much more quickly than if

you asked them which option they like the most. The option they hate the most is scored a “1”. The

option they hate the second most is scored a “2”, and so on. Move on to the next decision maker. Once

all decision makers have voted, add up the total for each option (row). The row with the highest total is

the winner – this best option is the least “hated”. And rather than taking it personally, some team

members will “hate” their own idea once they see it in the light of a hate matrix and compare it to other

alternatives.

Slow decision-making processes torpedo fast-moving DevOps environments. A well-executed hate

matrix can be used to regain that momentum.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 9 of 11

Mistake #9: Three Pizzas

Teams that have a lot to accomplish are often tempted to enlist more “hands on deck”. Together

Everyone Achieves More. Or so we’re told. Scheduling big meetings is appropriate only if you are making

an announcement or conducting one-to-many type communications. But for working meetings where

net new accomplishments are expected of the attendees, large meetings nearly ensure that nothing

important will get done.

What exactly is a “big meeting?” Amazon and Jeff Bezos provide the answer. If you require more than

two pizzas to feed the attendees, your meeting is too big. Organizational Psychologist Richard

Hackman’s research tells us that inefficiencies in communicating expand as group size expands.

Hackman points out that optimal working size for meetings is 5 people, 10 at most. So if you’re inviting

a distribution list to your meetings, that’s your first mistake.

If you feel obligated by corporate politics to invite more and more stakeholders, consider using R-A-P-I-D

to help you decide who to invite (and who to spare having to attend another meeting). RAPID was

developed by Bain & Co. to systematize decision-making and to eliminate miscommunication and

misunderstandings. Here are the R-A-P-I-D roles:

Recommend:

In a software development example, the “Recommender” is likely the one who calls

the meeting. This person may be an IT Ops Manager who has ownership over the

success of a major application release. This person may package alternative

approaches for a Decider.

Approver:

Approvers are often a sign-off for regulatory or other compliance questions. This role

may not always be required.

Perform:

People actually performing the work may include people from both Dev and Ops.

These attendees are generally tasked with doing the job once the Decision has been

made.

If you’re
inviting a
distribution list
to your
meetings,
that’s your first
mistake.
Remember the
two pizza rule.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 10 of 11

Influence:

The Influencer should provide useful background information to the Recommender

for their consideration.

Decide:

In smaller companies, this may be the same person as the “Recommender”. In larger

organizations, this may be someone who can serve as a tie-breaker.

What’s missing from that list? All of the “stakeholders” and peripheral groups who might be interested

but not invested in the success of the project. Inviting too many stakeholders is an invitation to slow

down progress and to waste your time and theirs. Your Decider should make their decision in

consideration of the other stakeholders in the organization. So those stakeholders do not need to be in

the room with you…eating your pizzas. With only two pizzas, you’ve fed the handful of people who

actually need to attend and accomplish something at your working meeting – and you’ve avoided the

‘death by meeting’ trap that screws up DevOps.

Mistake #10: Working

Open Compute Concept original
datacenter electrical design

- Jay Park of Facebook

Fast moving teams can be tempted to “keep their noses

to the grindstone” to stay focused and get things done

in the office. This is a mistake. Working in the office is

reasonable and it’s productive, until it’s not. For

mainstream work, the central location of the office

provides its own efficiencies. However, the office itself

invites a type of corporate-speak and corporate-think.

Offsite venues offer a change of scenery that in turn

opens new conversations and new thinking. Once

colleagues are sitting shoulder to shoulder at a

restaurant or bar, they will have a totally different type

of conversation that they would never have via email or

in a stuffy conference room. Truths get told and new

ideas get hatched. How many breakthrough ideas have

been hatched on a cocktail napkin versus yet another

scheduled office meeting?

Do you want to know what is really going on in the office? Get out of the office and find out. You learn

more about what’s working and what’s not working. Something you may have thought was working just

fine is actually a problem. Or maybe you thought you were the only one struggling with a process, only

to find out everyone else is struggling too. This is especially true in IT, where Development and

Operations have a main goal of software delivery with entirely different approaches of how to achieve

it.

http://www.orcaconfig.com/

 How to Screw Up DevOps: A Field Guide

 www.orcaconfig.com Page 11 of 11

If your DevOps team is having problems with another team

when implementing a new process or tool, consider taking

someone from the other team to happy hour to talk things

through. You may more easily understand their hesitations or

concerns. You might call this method your “Return on Scotch” –

the return on investment someone gets from dropping

everything and having a scotch (or maybe a beer) with a

coworker to have a candid conversation and solve a work related

problem outside the workplace.

What’s your
“Return on
Scotch”?

Staying in your office, approaching the same problems in the same way with the same corporate-speak

is a tried and true way to screw up DevOps.

Summary
There are no guarantees for launching a successful DevOps program or creating a thriving DevOps

culture. The list of pitfalls outlined here is long but it is certainly not complete. But at least these

mistakes are quite common and therefore quite predictable, and preventable. Just like a sports team,

victory may simply come down to eliminating unforced errors. Knowing what not to do in your DevOps

journey is as important as knowing what to do.

About the author:

Kristy McDougal is a co-founder of OrcaConfig where she leads Product Engineering for Orca, an application-
centric and middleware configuration management software solution for DevOps teams. Prior to launching
Orca, Kristy was a Senior Pre-Sales Consultant within BMC Software's world-wide DevOps specialist team. Before
BMC, Kristy held technical positions at VaraLogix, Virtual Bridges, Global Foundries, and Advanced Micro Devices.
Her experience includes Unix systems administration, systems engineering, pre-sales consulting, and post-sales
services.

Kristy is ITIL Foundation certified and is an Electrical Engineering graduate of the University of Texas at Austin.

Copyright © 2015 Trifectix. All rights reserved. All trademarks, trade names, service marks and logos referenced herein belong to their

respective companies. This document is for your informational purposes only. Trifectix assumes no responsibility for the accuracy or

completeness of the information. To the extent permitted by applicable law, Trifectix provides this document “as is” without warranty of any

kind, including, without limitation, any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. In no event

will Trifectix be liable for any loss or damage, direct or indirect, from the use of this document, including, without limitation, lost profits,

business interruption, goodwill or lost data, even if Trifectix is expressly advised in advance of the possibility of such damages. Trifectix does not

provide legal advice. No software product referenced herein serves as a substitute for your compliance with any laws (including but not limited

to any act, statute, regulation, rule, directive, standard, policy, administrative order, executive order, and so on (collectively, “Laws”)

referenced herein or any contract obligations with any third parties. You should consult with competent legal counsel regarding any such Laws

or contract obligations.”

http://www.orcaconfig.com/

