
1

An Integrated Approach 
to Embedding Security 
into DevOps
A Best Practices Guide 



2

Introduction
What’s making your software essential to your business, is also 
making it more dangerous. When software is everywhere, everything 
becomes an attack surface. The way your organization develops and 
depends on software has changed - and never has it exposed you to 
more risk. And while software security has never been more business 
critical, organizations know if it gets in the way of DevOps, it just won’t 
work. Security must be inseparable from software development. 

As the backbone of the digital transformation, software is becoming 
increasingly complex through interconnectivity, mobile, cloud, open 
source, IoT, microservices, and AI. 
For example:

+ Over 80 percent of the code in today’s software
applications is open source

+ 30 billion connected IoT devices by 2020
+ 85 percent of customer interactions will be

managed without a human by 2020

Despite this complexity, time to market is the new name of the 
game. For example, Facebook on Android alone does between 
50,000 to 60,000 builds a day. However, this speed comes at a 
price. Verizon reports that nearly 70 percent of the data breaches 
they’ve investigated are due to attackers targeting vulnerable web 
applications, and risks are amplified as organizations move to 
DevOps without implementing proper security practices. In fact, 
70 percent of today’s developers indicate they lack the necessary 
training to adequately secure software. 

The recent industry shift towards DevOps makes it clear that 
organizations are adopting this development and operational 
model to facilitate the practice of automating software delivery and 
deployment. As a result, organizations are acknowledging that their 
traditional approaches to software security are having a difficult 
time adapting to this new model, since security is often viewed as 
an inhibitor to DevOps. In this eBook, we’ll delve deeply into the 
absolute best approach to embedding security into DevOps.

https://dzone.com/articles/how-to-check-open-source-code-for-vulnerabilities
https://www.visioncritical.com/blog/internet-of-things-stats
https://blog.capterra.com/machine-learning-and-artificial-intelligence-statistics/
https://engineering.fb.com/developer-tools/rapid-release-at-massive-scale/
https://enterprise.verizon.com/resources/reports/dbir/
https://www.computerweekly.com/news/450424614/Developers-lack-skills-needed-for-secure-DevOps-survey-shows


Contents

INTRODUCTION 

WHY THIS EBOOK 

WHAT YOU WILL LEARN 

CHAPTER 1:  Security within the 

Common Development Methodologies

   - Security and Waterfall 

   - Security and Agile 

   - The Software Security Sandwich and Where It 
     Comes From

   - Security and DevOps 

   - Shift Left vs. Shift Center

   - Linear vs. Circular – An Analogy That Should Help

CHAPTER 2:  Embedding Security into DevOps

   - The Current Approach to Security within DevOps

   - A Better Approach to Security within DevOps 

   - These Topics Must be Addressed when 
     Embedding Security into DevOps

   - Paying Attention to Open Source 
     Vulnerabilities in DevOps

2

4

5

6

7

8

9

10 

11

12

13

14

15

17

17

   - Recognizing the Issue of Code Complexity  
      in DevOps

   - Addressing Software Exposure While Not 
      Impacting Speed

CHAPTER 3:  Where to Embed Security into DevOps

   - Addressing the Three Categories of
     Vulnerabilities Commonly Found in Software

   - Different AST Solutions Find Different 
      Software Vulnerabilities

   - An Integrated Management and Orchestration 
     Layer is Critical

   - Where to Embed AST Solutions into DevOps

   - Shift Left in Education with SCE Makes the 
      Most Sense

   - Automation of AST Solutions within DevOps 
     Tooling is of Upmost Importance

   - Managing and Reducing Security Risks at 
     Scale - Automation is Key

CONCLUSION 

ABOUT CHECKMARX

18

18

19

20

21

22

24

23

25

25

31

32



4

Why This eBook

The root cause of many successful cyberattacks lies primarily in 
vulnerable software itself. The real question that needs to be asked 
is, “Can the industry do a better job of writing more-secure code, 
making software applications nearly impenetrable to cyberattacks?” 
Here at Checkmarx we believe the answer is yes. Checkmarx is 
dedicated to building software security solutions that address 
the root cause of nearly every successful cyberattack by finding, 
classifying, reporting, and demonstrating where and how to fix 
vulnerabilities in software. 

Understanding that organizations all over the world are on a steady 
path of adopting DevOps fundamentals within their software 
development and operational processes, the need for increasing 
levels of software security is becoming even more apparent. This 
eBook will clearly demonstrate how organizations can embed 
security throughout their DevOps initiatives and gain assurance that 
the software applications being released to the internet are secured 
against the broadening attack landscape found there.

Here at Checkmarx we recognize there is an essential gap pertaining 
to the industry’s understanding of where and how to embed 
security into DevOps, transforming it into the grand achievement 
of obtaining true DevSecOps.  From our discovery and findings, we 
realize that organizations desire knowledge about how to migrate to 
DevSecOps, hence the reason for this eBook.

This eBook will clearly demonstrate how 

organizations can embed security throughout 

their DevOps initiatives and gain assurance 

that the software applications being released 

to the internet are secured against the 

broadening attack landscape found there.



5

We’ll also dive deeply into the importance of integrating and 
embedding Application Security Testing solutions into your DevOps 
initiatives. Finally, we’ll thoroughly cover the critical importance of 
automation when trying to embed security into DevOps, since it’s 
the most important aspect of obtaining DevSecOps. Automation is 
a key element that must not be overlooked. Understanding these 
concepts at length will allow organizations to make better decisions 
concerning their DevSecOps initiatives, and as a result, drastically 
improve the security of the software they produce.

What You Will Learn

In this eBook, we’ll discuss some of the common software 
development methodologies of the past in the context of security 
overall. We’ll call out what hasn’t worked, what’s not working so well 
today, and what organizations need to do to fully gain DevSecOps. 
We’ll discuss where security enters the picture in DevOps and refute 
one of the common misconceptions being discussed in the application 
security industry. We’ll cover many aspects of embedding security 
into DevOps, but more importantly, this eBook provides detailed 
information concerning what to do, how to do it, and even why to do it. 

By reading this eBook, you will gain a solid 

understanding of what steps your organization should 

consider in order to begin an integrated approach to 

embedding security into DevOps.

5



6

Security within the 
Common Development 
Methodologies

Chapter 1



7

The evolution of software development has taken many turns 
since its inception. FORTRAN, released by IBM in 1954, was the first 
commercially available and widely adopted programming language. 
Fast forward sixty-five years and today, programming languages 
abound. Although languages have changed dramatically, the primary 
purpose of software development hasn’t. 

In comparison to 1954, the approaches to the way software 
is developed have majorly changed. Software development 
methodologies have profoundly evolved for the sole purpose of 
improving the quality, accuracy, and speed of delivering and deploying 
software. Driving these changes are a combination of time to market, 
customer requirements, and business demands. With the dramatic 
rise in cyberattacks and the resulting data breaches making the 
news daily, security has now come to the forefront within the newer 
development methodologies.  

From a software security perspective, let’s observe the software 
development methodologies used in the past, where security came 
into play, where it didn’t fit in so well, and where the industry is 
moving towards.

Security and Waterfall

For decades, the stages of software development were organized 
and accomplished using what was called a Waterfall methodology. 
The overall task was organized into stages that closely resembled a 
manufacturing assembly line, due to its proven success in producing 
goods of consistent quality, for the lowest cost. The assembly line 
was very linear in nature and anything that slowed or stopped the 
line equated to losses in production and revenues. However, 
where does adding security within the Waterfall methodology 
come into play?

Traditionally, Application Security (AppSec) teams worked with 
software project teams during two phases: technical requirements 
and design, and right before the software was scheduled to go 
live. After a project team gathered the business requirements and 
defined a target architecture, their project next went to an AppSec 
team for review. This review usually included some form of threat 
modeling and data flow exercises. Once complete, a list of security 
requirements was noted, and they were placed into the project 
design document. The document was handed over to development 
teams, who in turn worked on the application development for the 
next several months (or longer). 

After development teams had a working application that met 
the documented requirements, and users agreed it’s what they 
needed, the project team would engage with AppSec teams 
once again. Operating as a security gate, AppSec teams 
would run various penetration tests to find any security 
vulnerabilities in the draft-final product. They would likely



8

TECHNICAL DESIGN

DEVELOPMENT

TESTING

DEPLOY

SECURITY GATE

BUSINESS REQUIREMENTS

Figure 1

catalog a long list of vulnerabilities that had to be fixed before 
allowing the software to go live, and effectively halted the assembly-
line process. See Figure 1 below that highlights where the location 
of the security gate was in the Waterfall methodology.

Unfortunately for everyone involved, this approach engaged 
AppSec teams near the end of the assembly line. The delay caused 
by this approach, intending to give developers time to fix security 
issues near the end of the project, certainly jeopardized the 
project schedule overall.

As a result, everyone was unhappy. AppSec teams were unhappy 
because identified security issues would likely make their way into 
production, since the project schedule would usually win 
over security. Development teams were unhappy because they 
had to work overtime fixing many of the discovered security issues. 
Finally, leadership was unhappy because it appeared that project 
teams, AppSec teams, and development teams did not work well 
together. There is, of course, a better way.

Security and Agile
It was clear that a better methodology was needed that could 
incorporate security into the development processes, but was Agile 
created to address security? Not necessary so. 

Agile came about to address the linearly-based shortcomings of the 
Waterfall methodology. In 2001, a group of influencers began to 
rethink software development and as a result, produced the Agile 
Manifesto.

The whole point of Agile was to create an agile (responsive to 
change) environment that did not replicate a completely linear, non-
flexible, assembly-line process like Waterfall. The most important 
characteristic of Agile methodologies allowed developers to 
become more flexible to change during the overall process, based 

https://agilemanifesto.org/
https://agilemanifesto.org/


9

on iterative (repeating, repetitive) needs and requirements of the 
business. Collaboration between cross-functional teams was highly 
emphasized in Agile methodologies, since it empowered people to 
make team decisions and adjust to continuous planning, testing, and 
integration requirements.  

The Software Security Sandwich 
and Where It Comes From

In the both the Waterfall and Agile methodologies there are many 
security-related activities during the business requirements and 
technical design stage. There are also many security-related software 
testing processes performed before the application is scheduled to 
go live. These two activities, often occurring months apart, results in 
a software security sandwich so to speak. Although Agile has been 
widely accepted and is being used by development teams all over the 
world today, it still does not effectively solve the software security 
sandwich that existed in Waterfall. This sandwich still exists because 
organizations have not integrated security into all stages of software 
development. Agile certainly helps address the transitional nature 
of today’s business cycles, but it still doesn’t always address security 
head on.

Agile certainly helps address the transitional 

nature of today’s business cycles, but it still 

doesn’t always address security head on. 



10

Security and DevOps

As agile approaches became more commonplace, a philosophical shift 
began to be observed. Once development (Dev) teams completed 
their work, their project was turned over to an operations (Ops) team 
for deployment, support, and ongoing maintenance. However, what 
was experienced during that early era was that software would often 
run fine in the developers’ environments, but it had issues running in 
production. This created lots of friction between Dev teams and Ops 
teams, since neither team had intimate knowledge of what the other 
team did or was tasked with doing.

Near the end of the 2000’s, the industry saw the birth of DevOps 
due to a group of stakeholders who began to confer about how to 
build better linkage between Dev teams and Ops teams; creating 
new practices that drove a shift in traditional thinking. The DevOps 
movement established a culture and atmosphere whereby developing, 
testing, and delivering software was intended to take place quickly, 
regularly, and with more dependability. This cultural shift drove the 
inception of continuous integration (CI) and continuous delivery (CD) 
fundamentals, which are part of the DevOps building blocks today, as 
shown in Figure 2.

Fundamentally speaking, DevOps is about processes, connections, 
automation, and tooling throughout the development, test, and 
delivery stages. But more importantly, DevOps is about the 
automation of tooling and the different tooling associated 
with building software. However, one thing that DevOps 
fundamentals have failed to address on their own is, how to 
embed software security throughout the entire software 
development ecosystem. Concerning software security in both 
Agile and DevOps, there’s been lots of industry chatter over the 
last few years about a new method of adding security into these 
environments called “shift left”. Let’s look at this concept next.

Figure 2

DEVELOPMENT CI CD PRODUCTION

The DevOps Building Blocks



11

Shift Left vs. Shift Center

Within the software development industry, the term “shift left” 
surfaced as a result of organizations waiting to perform security 
testing until the end of the development process, often causing 
unexpected delays. If you’re testing your software looking for 
security vulnerabilities near the end of the development process 
(on the right), the recommendation is to shift your testing further 
to the left and perform security testing sooner—hopefully 
reducing delays. However, this makes very little sense overall, since 
DevOps is not linear like the Waterfall methodology. DevOps is 
circular as depicted quite well in Figure 3 below.

As we see in Figure 3, DevOps really doesn’t have a left or right in 
comparison to the more-linear processes used in Waterfall (Figure 
1). Sure, Dev is on the left and Ops is on the right, but DevOps is 
more like a figure-8 infinity loop that has no beginning and no end. 
The Dev process never stops, and the Ops process never stops as 
well. If someone were to shift left in Figure 3, where is left?

A better recommendation would be to shift center and 
embed software security solutions throughout DevOps. We’ll 
discuss shift center more in depth in Chapter 2.  However, here 
is an analogy that may help make better sense of the concept of 
"shift left" and why it really doesn’t fit in DevOps. 

Figure 3



12

Linear vs. Circular –  
An Analogy That Should Help

When you’re on a train and someone wants to get on or off the 
train, what does the train do? The train stops, passengers get on, 
and passengers get off. Then the train starts to move, only to do the 
same thing farther down the track. This is not the way we want to 
add software security to our DevOps initiatives, since it would most 
likely be a disaster. The whole point of CI and CD is that the train is 
never supposed to stop and shifting left just doesn’t fit. Instead let’s 
look at a better analogy that may hint of a new method of adding 
security into DevOps processes.  

The London Eye is one of the world’s tallest Ferris wheels. The 
interesting part about the London Eye is that when it’s open and 
running, the Ferris wheel never stops to on-board or off-board 
passengers. People get on, people get off, but the wheel continues 
without hesitation. No one on the ride knows who got on or who got 
off the other “pods”, since from their perspective, there’s no impact 
to their own ride experience. This is the way organizations need to 
think about adding software security into DevOps environments—in 
a way that never stops the process.

We are somewhat refuting the concept of "shift left", since 
it doesn’t make sense when observing the double-helix, infinity 
loop represented by Figure 3.  There really is no left in DevOps. 
Therefore, how should organizations embed security within 
DevOps? The next section will highlight what’s needed.

This is the way organizations need to

think about adding software security into 

DevOps environments—in a way that never 

stops the process.

https://www.youtube.com/watch?v=DIB_vr-txEs


13

Embedding Security 
into DevOps

Chapter 2



14

From defining security policies, automating 

security testing, identifying vulnerabilities, 

correlating results, and remediating 

vulnerabilities, to management and 

monitoring of security programs, and 

developer’ KPIs, there are many stages of 

security in an organization. 

Statistics demonstrate that a high number of security breaches 
resulting in the theft of private data are derived from attackers taking 
advantage of vulnerable software. Since that is the case, what’s needed 
to solve the problem of vulnerable software? Simple. Organizations 
must find a balance between speed and security within DevOps. Let’s 
look at the current approach to security within DevOps.

The Current Approach to Security 
within DevOps

When discussing security within DevOps, let’s first define what 
security is. In the world of software development, test, and 
operations, security can mean many different things. From 
defining security policies, automating security testing, identifying 
vulnerabilities, correlating results, and remediating vulnerabilities, 
to management and monitoring of security programs, and 
developer’ KPIs, there are many stages of security in an organization. 
However, let’s look at functional testing and application 
security testing first. 

Functional testing is where software is tested against a list of 
functional criteria to ensure the software operates as intended. 
This testing is normally performed through various automated and / 
or manual procedures, but the whole idea is that software must be 
operational before it is deployed. Functional testing is performed 
right before the software application is scheduled to go live. 



15

The second type of testing is known as Application Security Testing 
(AST), and this is where identifying vulnerabilities, correlating results, 
and remediating vulnerabilities must be performed before the 
software is deployed. Today, and in lots of DevOps environments, 
both types of testing (functional and AST) are performed within the 
Test/QA stage shown in Figure 3. And this is where the need for speed 
and the need for security tend to clash. The reason for this is that AST 
has not been embedded into the entire Dev process. Instead, and 
in most cases, AST only exists in one place—at the transition point 
where software moves from Dev to Ops, often creating a bottleneck 
that induces delays.

Development teams are driven by time to market. AppSec teams 
are driven by functioning software that’s secure. Here is where a 
balancing act is taking place. AST cannot delay deployment, and if 
it does, it usually means time wins over security. Added delays for 
AST, vulnerability triage, and remediation somewhat defeats the 
whole precept of CI/CD. There must be a better way of performing 
AST throughout the entire DevOps process that will not invoke delays. 
In the next section, we’ll discuss a better approach.

A Better Approach to Security 
within DevOps 

When reviewing Figure 3, there once again appears to be part of a 
software security sandwich called Test/QA, operating somewhat 
similarly to the Waterfall methodology and its security gate mentality. 

Development teams are driven by time to 

market. AppSec teams are driven by 

functioning software that’s secure. Here 

is where a balancing act is taking place. 



16

However, there is a way of embedding AST solutions throughout all the 
Dev stages, but how is that done? In Figure 4 below, the concept of shift 
center may make better sense.

Figure 4

AST Solutions:
SAST – Static Application Security Testing 
IAST – Integrated Application Security Testing
SCA – Software Composition Analysis
DAST – Dynamic Application Security Testing

In Chapter 3, a more in-depth discussion of the available AST solutions 
listed here is provided, in addition to where they fit within DevOps.

As shown in Figure 4, AST solutions can be embedded into the stages 
of Dev to include Design, Code, Check-in, Build, and Test/QA. Let’s 
quickly list some of the available AST solutions on the market today.

Development teams are driven by time 

to market. AppSec teams are driven by 

functioning software that’s secure. Here is 

where a balancing act is taking place. AST 

cannot delay deployment, and if it does, it 

usually means “time” wins over “security”.

DEV
OPS



17

Open source software is still software and it’s 

exposed to coding errors that can result in 

security vulnerabilities.

These Topics Must be 
Addressed when Embedding 
Security into DevOps
Beyond Application Security Testing (AST), there are many things 
that must happen within an organization that is embracing DevOps 
initiatives. Remember, DevOps is a cultural shift that goes beyond 
just adding AST to your DevOps environments. With this in mind, let’s 
discuss several other topics that must be addressed before we move 
to the next chapter.

Paying Attention to Open Source 
Vulnerabilities in DevOps

The adoption of open source components by software development 
teams dramatically changed the software industry. Instead of 
building all software from scratch, organizations use open 
source components to provide common or repetitive features and 
functionalities. This limits the use of custom code to proprietary 
features and functionality. Open source software is still software and 
it’s exposed to coding errors that can result in security vulnerabilities. 
Addressing vulnerabilities in open source components is critical and 
must become part of the DevOps process.



18

Software exposure results from mistakes made in the design, coding, 
testing and maintenance of software. Exploiting these vulnerabilities 
can make the software unavailable or unreliable to users, or allow 
attackers to execute unauthorized code, read or modify data, change 
a user’s privileges, hide activities, or bypass security controls. 

Recognizing the Issue of 
Code Complexity in DevOps

Another significant contributing factor to developers introducing 
vulnerabilities is due to code complexity.  Organizations with very 
large software applications typically do not have one person on staff 
that understands the entire code base, which can contribute to the 
propagation of security issues throughout a code base. 

Today, it’s very rare that home-grown software applications are built 
from scratch. They are normally a branch or a copy of an existing code 
base, and seldom do developers have all the code in their native work 
environments for the very large and complex software they work 
on. This concept of code complexity must also be addressed within 
DevOps, since complexity can contribute to repetitive vulnerabilities 
making their way into production.  

18

Addressing Software Exposure 
While Not Impacting Speed

Software exposure results from mistakes made in the design, 
coding, testing and maintenance of software. Exploiting these 
vulnerabilities can make the software unavailable or unreliable to 
users, or allow attackers to execute unauthorized code, read or 
modify data, change a user’s privileges, hide activities, or bypass 
security controls. 

Since traditional application security and application testing 
approaches can only address specific facets of development at 
minimum speeds, they often miss vulnerabilities before they’re 
released—slowing time to market and creating costly inefficiencies. 
While software security has never been more business critical, if 
it gets in the way of DevOps, it just won’t work. The need for fast, 
incremental, static, run-time, and open source testing is critical to 
address software exposure at the speed of DevOps.

Now that we’ve discussed what’s needed within the 
context of software security and DevOps, in the next 
chapter we’ll discuss where and how to embed security 
into DevOps. We’ll also discuss the many 
building blocks needed to achieve DevSecOps and 
why they’re important.



19

Where to Embed 
Security into DevOps

Chapter 3



20

For nearly two decades, cyber attackers have willfully profited from 
organizations releasing vulnerable software on the internet. As a 
result, organizations have attempted to protect their vulnerable 
software with a host of different technologies that fall under the 
umbrella of “software security”. From anti-malware solutions, DDoS 
defenses, next-gen firewalls, DMZs, and intrusion prevention systems, 
to web application firewalls (WAF), bot management solutions, 
runtime application self-protection (RASP), load-balancers, and a 
host of other technologies, none of these actually remedy the root 
cause of nearly every successful cyberattack—vulnerable software 
that is ripe for attack.  

The products mentioned above attempt to manage the 
symptoms or the results of coming under a cyberattack, 
since none of them can find and fix the many exploitable
vulnerabilities in software. Attempting to protect vulnerable software 
and applications from the outside-in is simply failing. There is a 
better way of securing software from the inside, by testing, finding, 
and remediating vulnerabilities, resulting in producing more-secure 
software. The next section outlines how that can be done today.

Addressing the Three Categories 
of Vulnerabilities Commonly Found 
in Software

Although the most common software weaknesses (or software 
errors) are enumerated in the OWASP Top 10 and the SANS Top 25, 
these entire lists can be broken down into three primary categories 
of vulnerabilities found in:

+ Uncompiled Code
+ Running Code
+ Open Source Components

For organizations who desire to produce more-secure software, 
the usage of multiple AST solutions is imperative within DevOps to 
address the vulnerabilities that likely exist in an organization's 
proprietary software. Let’s delve into why that is.

https://www.owasp.org/index.php/OWASP_Top_Ten_Cheat_Sheet
https://www.sans.org/top25-software-errors


21

Different AST Solutions Find Different 
Software Vulnerabilities

Static Application Security Testing (SAST) solutions are used to 
incrementally scan (test) uncompiled code for vulnerabilities during 
the software development process itself within Dev. The code is still 
in its uncompiled state and static testing is designed to find flaws like 
SQL injection much more easily. SAST solutions are great at providing 
code-level guidance as to where and how to fix vulnerabilities in source 
code. SAST fits well into integrated development environments (IDEs), 
issue trackers, and build tools to support CI/CD workflows. SAST fits 
well in DevOps since it doesn’t introduce significant delays. 

Interactive Application Security Testing (IAST) solutions are 
better at detecting deployment configuration flaws in running 
applications found during functional testing—before the application 
is deployed. It would be imprudent to assume that applications will 
be vulnerability-free after the development phase, or that code in 
run-time doesn’t need to be tested. IAST understands how all the 
pieces of an application work together and operate at run-time, so it 
can detect vulnerabilities in running applications that attackers may 
be able to exploit. IAST fits well into DevOps since it doesn’t introduce 
delays beyond the time needed to perform functional testing.

Software Composition Analysis  (SCA) solutions empower 
development, security, and operations teams with the insight 
necessary to efficiently address the risks associated with the open 
source software within the applications they create, deploy, and 
maintain. Analyzing and managing open source components in 
use ensures that vulnerable components are removed or replaced 
before they become a problem. SCA fits well into DevOps since it 
doesn’t introduce significant delays.

Dynamic Application Security Testing (DAST) tools detect 
vulnerabilities on running applications by externally attacking 
the application. DAST coverage is limited to reflective types of 
vulnerabilities, since DAST solutions are essentially blind as to 
what is happening inside an application. DAST test results offer 
no code-level guidance as to where software vulnerabilities are 
located, making it difficult for developers to easily fix identified 
vulnerabilities. DAST tools can’t effectively achieve the fast 
turnaround times required. DAST does not fit well into DevOps 
since it often introduces lengthy delays.



22

An Integrated Management and 
Orchestration Layer is Critical

Adding a Management and Orchestration layer to the AST solutions 
mentioned above helps unify the solutions into an integrated and 
easy-to-use platform that’s designed to provide organizations with 
a holistic view of their software vulnerabilities at scale. As a result, 
this enables organizations to easily track, manage, and remediate 
security risks at scale. This layer is vastly needed to unify security 
policies, gain full visibility of all vulnerabilities, optimize remediation 
efforts, and centralize user / role management of the AST solutions 
deployed. When looking to implement AST solutions, ensure they 
come with an integrated management and orchestration layer as part 
of the solution.

Where to Embed AST Solutions 
into DevOps

On the following page is the same figure as shown in Figure 4. 
However, the addition of various AST solutions has been added to 
Figure 5 within Dev on the left and encroaching into Ops on the right. 
This figure should help organizations understand where various AST 
solutions fit within the stages of DevOps.

This layer is vastly needed to unify security

policies, gain full visibility of all vulnerabilities, 

optimize remediation efforts, and centralize 

user / role management of the AST solutions

deployed.



23

As we can see in figure 5, AST solutions must be imbedded within the 
stages of Dev, while encroaching into Ops. The correct AST solutions 
for each stage of Dev are highlighted by the thin green lines around the 
various stages. The bullets below highlight the exact stage (or stages) 
where AST solutions fit best within Dev as well:

+ SAST operates throughout the CODE, CHECK-IN, BUILD,
and TEST/QA stages

+ IAST operates during the TEST/QA stage
+ SCA operates during the BUILD and TEST/QA stages
+  DAST operates during the TEST/QA stage, but has

limitations as previously mentioned

Figure 5

In figure 5, AppSec Managed Services allows organizations to 
outsource their AST to a third-party that helps introduce and 
implement application security processes, secure coding practices, 
security testing, and vulnerability remediation. Organizations that 
lack internal resources and expertise during the initial phases of 
embedding security into their DevOps environments can benefit 
from these services. 

Also, in Figure 5, a new term (SCE) has been added that has not been 
covered yet. SCE stands for Secure Coding Education and operates 
within the CODE stages of DevOps. The next section will highlight 
SCE more in depth. 

Shift Left in Education with SCE 
Makes the Most Sense

We’ve somewhat refuted the concept of shift left concerning AST 
solutions in DevOps. However, shift left does make sense when 
speaking to Secure Coding Education (SCE). The earlier you discover 
software vulnerabilities, the easier and less expensive they are to 
fix. However, the reality is that a significant percentage of developers 
don’t have confidence in the security of their own applications, or 
they have little if any intimate knowledge of vulnerabilities and how 
they’re created.

Figure 5



24

The whole idea of SCE is to enhance the 

security maturity of developers, enabling 

them to take an active role in developing

more-secure code.

This gap exists because developers are measured by speed and 
the number of functional bugs in their code, not the amount of 
security vulnerabilities they induce. To bridge this gap, organizations 
now understand that they need to provide their developers SCE 
that’s incorporated right into their IDEs as early on as possible. The 
problem with traditional training methods such as video tutorials, 
periodic classroom training, and mandatory online courses often fail 
to achieve secure coding practices, since they are mundane, out of 
context, and not interactive.

The whole idea of SCE is to enhance the security maturity 
of developers, enabling them to take an active role in 
developing more-secure code. Developers that think security can 
measurably increase the security of their software, reduce 
repetitive coding errors, and significantly lessen the number of 
software vulnerabilities that must be triaged and fixed. When a 
vulnerability is found during AST, developers should have a way of 
highlighting the vulnerability, jump to a training lesson specifically 
about that type of vulnerability, and learn how to immediately fix 
the vulnerability, all while never leaving their IDEs. 

Since DevSecOps means more than just embedding AST solutions 
into DevOps processes, let’s review a few more significant areas of 
focus concerning the importance of automation in DevOps. 



25

AUTOMATE

IDENTIFY

MANAGE

REMEDIATE

CORRELATE

DEFINE

Automation of AST Solutions 
within DevOps Tooling is of Upmost 
Importance

Obtaining DevSecOps requires organizations to automatically 
incorporate AST solutions throughout DevOps to eliminate manual 
testing procedures that may have caused delays in the past. These 
AST solutions must be as transparent as possible to developers 
and security teams ensuring the agility of DevOps is not hindered. 
Automation is key to helping fulfill regulatory requirements as well as 
managing overall risk. In order to meet this objective, AST solutions 
must be capable of being completely automated within the tooling 
that’s often already in use within DevOps. Beyond automation and 
tooling, the next section expands upon the importance of automation 
in DevSecOps overall.

Figure 6

Managing and Reducing Security 
Risks at Scale - Automation is Key

As previously mentioned, there are many facets of software security 
in organizations today. When discussing embedding security into 
DevOps to achieve DevSecOps, there are several aspects that are 
somewhat beyond application security testing in general, while 
others are directly related to it. Figure 6 highlights the activities that 
must be performed in order to fully manage and reduce security 
risks at scale.

SOFTWARE
SECURIT Y 
PLATFORM



26

As shown in Figure 6, when each of these activities are being 
performed in the most automated and integrated fashion as possible, 
organizations begin moving towards a complete Software Security 
Platform that embeds security throughout DevOps. Next, let’s 
explore each of the activities shown in Figure 6 in more detail. 

+ Define Security Policies

This is where organizations define their application security policy 
concerning what are the acceptable and non-acceptable risks they’re 
willing to take. Applications will always have vulnerabilities and no 
organization will ever fully achieve zero vulnerabilities and zero 
functional bugs. Defining what risks are acceptable and what are not 
is imperative at this stage. 

The security policy that is defined serves as a pseudo contract 
between AppSec teams and developers, so both fully understand 
what’s expected of them in terms of security. This policy also serves 
as guidance as to what vulnerabilities should be remediated first 
as a result of application security testing. Defining security policies 
is tightly associated with DevSecOps and these policies are vital to 
measuring the overall success of your DevSecOps initiatives.

+ Automate and Integrate

This is where organizations perform the activity of integrating 
their SAST, IAST, and SCA testing solutions into their build and / or 
development environments—making sure that the AST scans are 
completely automated. Without automation, organizations cannot 
scale. Each organization can choose to what level they desire to 

This is where organizations perform the 

activity of integrating their SAST, IAST, 

and SCA testing solutions into their 

build and / or development 

environments—making sure that the 

AST scans are completely automated.



27

automate, since it can be done in many ways and forms. But eventually 
you want to make sure that your applications are being scanned in a 
consistent manner. The best way to do that is to automate the scans 
within the build environment, the development environment, or both. 

For example, you want to make sure that you automate your AST 
solutions when the builds are running in the build environment or 
when developers are performing a code commit or a pull request, 
etc. In the latter case, that automation takes place earlier in the 
development environment.

When AST solutions are being automated into the coding phase, 
development teams use self-service to automate scans via code 
collaboration platforms such as GitHub, Azure DevOps, etc.  When 
AST solutions are being automated during the build/CI phase, CI 
plugins are being used to automate the scans. Finally, ticketing system 
integration closes the loop by handing developers the relevant 
findings from their scans in real-time.

+ Identify Vulnerabilities

Once you’ve performed the activity of integrating and automating the 
AST solutions as previously described, this step is where the AST scans 
are being performed. Using SAST, IAST, and SCA in an automated fashion, 
these solutions are fully capable of detecting all sorts of vulnerabilities 
in your software applications. These can include vulnerabilities in:

+ Uncompiled Code
+ Running Code
+ Open Source Components

When AST solutions are being automated into 

the coding phase, development teams use 

self-service to automate scans via code

collaboration platforms such as GitHub, Azure 

DevOps, etc.



28

The whole point is to detect coding errors (that may cause 
vulnerabilities) as early on as possible without slowing down the 
development, delivery, and deployment of software applications, 
ensuring the agility of DevOps is effectively maintained.

+ Correlate Results

The idea behind correlation is to increase the level of confidence and 
priority of the high-risk findings from AST solutions, especially when 
you’re able to correlate the same findings from different scanning 
solutions. For example, if there was a SQL injection vulnerability 
discovered by SAST during static testing, and IAST confirms the 
same finding during interactive testing, if you can correlate both 
of those findings together, you can increase the confidence level 
that the finding is a true positive.  

In this case, the likelihood of a finding being reproducible is extremely 
high. When this is so, the vulnerability needs to be fixed sooner, rather 
than later. When organizations have hundreds of applications and their 
AST solutions are detecting thousands of potential vulnerabilities, the 
ability to scale starts here—when organizations can make sense of 
the large amounts of data from their scan findings. 

+ Remediate Vulnerabilities

Remediation has two aspects. One is what should be fixed, and the 
other is how to fix it. When referring to what should be fixed, in the 
context of scale, no developer can handle thousands of vulnerability 
findings. You need to make sure that you can prioritize all those 

The idea behind correlation is to increase the 

level of confidence and priority of the high-risk 

findings from AST solutions, especially when 

you’re able to correlate the same findings from 

different scanning solutions.



29

findings in a way that a developer can digest them. Developers need 
to be able to focus on what’s most important, and to work on fixing 
the vulnerabilities that would exponentially reduce the most risk. 

Having the ability to set an automated prioritization mechanism 
across the thousands of findings is of upmost importance. Using a 
set of criteria, organizations can define what’s more important and 
what’s less important.  For example, a newly discovered open source 
vulnerability may be more important than a vulnerability in custom 
code. Fixing a vulnerability that has been in place for more than 60 
days may be more important than something newly discovered. There 
are lots of criteria that will enable you to control how the findings are 
eventually prioritized. When that is done in an automated manner, 
you can scale, and each developer receives their segment of code that 
they need to fix in an automated fashion. Today, few organizations 
are doing manual correlation. Either they have tools to correlate, or 
simply put, they are not correlating. 

Typically from the automated prioritization mechanism, it could 
also include machine learning algorithms that would be designed to 
focus your attention on what are the true positives. Machine learning 
algorithms have the ability of setting percentage weights to various 
findings. For example, machine learning algorithms can be taught 
to understand that one type of vulnerability has an extremely high 
percentage of being a true positive, while at the same time learning 
that another type of vulnerability has a very low percentage of 
being a true positive. This can massively improve confidence of a 
true positive vs. a false positive. This is where automation can be 
increasingly helpful.

Once a team decides what needs to be remediated, often based on 
the policy set forth in the first bullet (Define Security Policies), the 
next decision is how to remediate. Here is where Secure Coding 
Education (SCE) can be of great assistance. SCE can teach 
developers how to fix a certain vulnerability with a customized 
lesson that is specific to that type of vulnerability, especially if SCE is 
integrated directly into developers’ IDEs.

29



30

It also creates a feedback loop, back to 

your developers, since this process 

never ends. And the whole idea is to 

allow continuous improvement 

throughout your DevSecOps ecosystem.

+ Manage and Monitor

Management and monitoring are where organizations track their 
application security program’s Key Performance Indicators (KPIs). 
This allows organizations to see if, over time, the amount of the 
vulnerabilities is decreasing, the rate of introducing new vulnerabilities 
is decreasing, and the rate of severe vulnerabilities is decreasing as 
well. There are all kinds of KPIs that organizations use to see if their 
security program is effective. Automating KPI monitoring, tracking, 
and reporting as much as possible helps key stakeholders become 
and remain better informed overall.

Part of that KPI cycle is about knowing what areas need improvement 
and what areas don’t. This allows teams to determine if the security 
policy is being met or not, or if developers need more training, tools, 
and / or incentives. Teams can also determine if the policy in place 
needs refinement, etc. All of this activity allows organizations to 
measure their program’s current status and level of improvements 
being made. It also creates a feedback loop, back to your developers, 
since this process never ends. And the whole idea is to allow 
continuous improvement throughout your DevSecOps ecosystem.



Conclusion
The whole point of this eBook was to foster a certain level 
of understanding pertaining to how to embed security into 
an organization’s DevOps culture in the hope of helping 
organizations fully obtain what the industry calls DevSecOps. 
What’s really achieved by embedding Sec into DevOps, in 
the most automated fashion as possible, is more-secure 
software that supports an organization’s bottom line, while 
reducing the risks they face daily.

Integrating automation into as many areas as possible 
within DevSecOps is critical to improve quality, accuracy, 
security, and speed of delivered software. By following the 
guidance in this eBook, not only will organizations improve 
their security postures, but their KPIs and ROIs will increase 
over time as well. Faster, more-secure software releases are 
what many organizations strive for today and embedding 
security into DevOps, as demonstrated herein, will help 
them finally achieve their goals.



32

With Checkmarx you get:

Security from the Start
We deliver the industry’s most comprehensive, unified 
software security platform that tightly integrates SAST, 
SCA, IAST and AppSec Awareness to embed software 
security throughout the CI/CD pipeline and reduce 
software exposure.

Best Fit for DevSecOps
Checkmarx leads the industry in delivering automated 
security scanning as part of the DevOps process.

DevOps Speed
Only Checkmarx enables you to manage software 
exposure at the speed of DevOps - getting applications 
to production quickly and securely without interrupting 
developer workflows.

Unmatched DevSecOps Expertise
We know software like no one else. We know security 
like no one else. Developers like Checkmarx better 
than anyone else.

About Checkmarx
Software security for DevOps and beyond.
Checkmarx makes software security essential infrastructure: unified with DevOps, and seamlessly embedded into your entire 
CI/CD pipeline, from uncompiled code to runtime testing. Our holistic platform sets the new standard for instilling security into 
modern development.


	Button 1: 


