Thanks for listening to To Be Continuous, a show about Continuous Delivery and software development hosted by Paul Biggar, Founder of CircleCI, and Edith Harbaugh, CEO of LaunchDarkly. In this segment of To Be Continuous, Edith Harbaugh and Paul Biggar talk with Sam Stokes about empathy in software development, how mini-services are the new microservices, and constantly updating software in a constantly updating world. Sam is currently a freelance software consultant and previously was the co-founder of Rapportive.
This podcast is brought to you by Heavybit, a program that helps developer-focused companies take their product to market.
[soundcloud url=”https://api.soundcloud.com/tracks/237727552?secret_token=s-k6OKe” params=”auto_play=false&hide_related=false&show_comments=true&show_user=true&show_reposts=false&visual=flase” width=”100%” height=’166′ iframe=”true” /]Paul: Alright, Sam, so what’s your favorite thing about continuous delivery?
Sam: I like to think about it terms of shortening feedback loops. A lot of things that startups do can basically be looked at as doing something and then waiting to get some feedback on it, and then deciding whether to do more of that thing or to do a different thing.
And continuous delivery is, people talk about sort of reducing the batch size and also about shipping stuff faster and clearly having some kind of automation. And continuous delivery is going to help you with both of those things.
Paul: So is this specifically on the, sort of on the journey of a small startup towards product market fit? Is that kind of the sense you’re thinking of it as?
Sam: I see it as applying to teams of different sizes. So for sure in a small startup you’ve got you need to iterate fast, you’ve got all these product ideas. But I think even if you’re a small team in a big company as I was recently working on, and still have a lot of the same pressures you have, product managers who want to try new ideas, you have customers who are sending in feedback all the time—some of which you want to listen to, some of which you want to tune out.
It’s sort of, in some ways, a lot like being in a startup. At least, ideally it would be. And a lot of the problems you can run into are basically about not being able to close those loops quickly enough.
Edith: Sam you’re someone who knows a lot about loops, so now might be a good time to introduce yourself.
Sam: Sure, my name is Sam Stokes. Until recently I was working as a staff software engineer at LinkedIn. And right now I am, I guess a freelance software consultant, thereabout.
Paul: I feel there’s a little bit of history missing there.
Sam: Alright. Going back in time a little bit. So I was a co-founder of a startup called Rapportive. That was a plugin for Gmail that when somebody emailed you, would show you a social profile of that person in the right-hand side next to their email.
So that you could get some insight into who you were talking to and put some more humanity into your communications with people—that’s sort of the way we saw it.
Paul: That’s still the only plugin to Gmail that I use.
Edith: I use it, too, and it’s for exactly that reason, ’cause I do a lot of customer development, and it helps so much to do, to empathize. To see that this—
Paul: Right, right, yeah is a real person.
Edith: You know, to see their face and you feel a connection.
Paul: It’s interesting just with kind of customer communication. One of the tools that we use is Intercom. And once I started using Intercom it was the same sort of feeling I got the first time I used Rapportive, that like I feel that there’s a human at the other end of this and I feel I know who that human is and it just changes how you communicate with the people.
Sam: It’s really motivating to hear and to see other examples as well. We really felt like email and sort of a lot of business communication in general can be sort of cold and formulaic.
Yeah, just bringing that human element, even just seeing a face. I haven’t used Intercom but I’m guessing they have some similar ideas.
Paul: Similar, when you send out messages or reply to someone it does the person’s face there.
Sam: Right, we had a sort of plugin API in the, it was a sort of private beta version of our product and one of the things people used it for, so this would let you plug into the sidebar, people would plug it into their customer database and so they could see something like, they’d get an email from a customer it shows them how long they’ve been a customer, how much they’ve spent in their store—
Paul: Right, right.
Sam: What version of the app they’re running, that sort of thing.
Edith: Was your original idea to do that sort of empathy or was that something that just you iterated into?
Sam: The empathy was where we started. There were lots of ideas about taking all the information from all these different sources, you know public sources like, truly public sources like Google, quasi public sources like a Facebook profile if you’re friends with them on Facebook, and then private sources like stuff in your company database.
All stuff that you would be able to search for if you could be bothered to go and do the searching but doesn’t necessarily bring itself to you while you’re talking to that person. And yeah, it was very much, what should you know when you’re talking to this person in order to make them feel like they’re interacting with a real person and an empathetic one.
Paul: So I remember when you launched Rapportive it was like, or it felt to me like it was, an instant hit and maybe that was just the overnight success that comes after years of trying. I had a doco and what was the kind of software delivery process of that?
Sam: Hmm, that’s a great question. I guess there’s two parts to that really. So how did it get there and what was our process that allowed us to survive it? So I guess how did we get there, it was a certain amount of luck in that process as there probably always is. We built our prototype and it was a pretty minimal prototype.
You know, it had the functionality that was like this awful demo website up. The only reason there was a website up was we were trying to raise a seed round at the time, we were applying to OIC. Y Combinator requires that you have a demo site that’s public. They don’t like it to be password-protected. And so we had this thing up where you could install it and we had like 20 users. One of our friends decided that he was going to email a friend of his at one of the blogs, I think it was ReadWriteWeb and say, you know, hey you should check this out.
And his friend checked it out and it turned out that one of the demographics that really liked the product that we built was journalists because they get a lot of emails from people they don’t know and they want to sort of know an extra nugget. I guess that was one of our takeaways was like, if your startup is really useful for journalists, that’s a great way to get some early press.
Edith: That’s what worked for TripIt because journalists travel a lot. So TripIt just got all this free press basically ’cause journalists used it, loved it, and blogged about it. Unfortunately, journalists do not do continuous delivery so much.
Sam: So how do we survive that? ‘Cause what happened in that 24-hour segment was that we went from 20 users up to 20,000.
Paul: Wow.
Sam: So I guess one part of it was our CEO had made the original platform choice. His name’s Rahul Vohra, he has a computer science degree, he’s an awesome technologist, but his focus is not generally on writing the software. He’d been writing the prototype, and he was like, ‘I need the quickest thing that I can get to get this market, so I’ll put it on Heroku.’
Which turned out to be a life-saving decision because when the 1,000 X traffic spike arrived we just added some more dynos. So that was how we didn’t burn down. What did we do after that? I guess in terms of software process we were pretty young as a company, so it was pretty much hack away, read all the tweets. But there was a lot of, what you might call customer development more than software development at the time. So we pretty quickly decided that we were going to try and respond to every single tweet and every single email and so on to like try and live this idea of a good customer experience.
And I think that helped to sort of amplify the viral effect of that press spike because people were sort of retweeting the things we were saying and getting a generally good feeling about us.
And so a lot of those tweets were like, ‘Oh I wish I did this,’ or ‘I wish I did that,’ or ‘I wish you could see Twitter profiles in there.’ So it was a little bit of sort of customer support-driven development. Which obviously doesn’t scale but it can be a pretty good way to build some goodwill early on.
And I think a lot of our users were sort of quite passionate about using us, ’cause they felt like they got that personalized attention.
Paul: So did the, when you scaled the dynos did it just work?
Sam: It worked perfectly until we hit the rate limit for the API that we were getting all our data from.
Paul: The LinkedIn API?
Sam: At the time we were using a service called RapLeaf.
Paul: Oh yeah, yeah, I remember them.
Sam: It wasn’t their main product, but they provided an API which … So basically the thing that Rapportive does, which is take an email address and produce social profiles about that email address. At the time that was entirely just UI wrapped around RapLeaf. We ended up building sort of our own version of that.
And so we’d been using their API on a sort of demo basis. Because again, 20 users. Yeah, we immediately had to learn about things like request queues, so that our app wasn’t just falling over waiting for their API, and then frantically Biz Dev-ing to try and increase our rate limit, while at the same time figuring out the best ways to get around the rate limit without upsetting the Biz Dev deal. Yeah, we didn’t really have much of a sort of continuous delivery process at the time.
But I guess not as many people were talking about it—this was 2010. I think the first blog post had come out from Iron View and so on, but I think it wasn’t as, you know, there weren’t full startups supporting it. What we did have was the Heroku deployment model, which was basically like within five seconds of writing the code you can deploy it to production.
Which if you squint at it, kind of is continuous delivery because you’re saying, all of the bits of your deployment that you have are automated. We didn’t really have many tests at the time, so the tests we had were automated ’cause there weren’t any. Our deployment was absolutely, you do it get push, you don’t have to like move any servers around or anything like that.
Paul: Seems like the testing model around, or the continuous delivery model around a Gmail plugin is probably going to be a fairly difficult process anyway.
Sam: We never really had a good answer to, you know, what happens when Gmail changes their UI. The surprising part was it didn’t happen that often. We thought it would be breaking every week and we’d need all kinds of canary accounts and end-to-end testing to monitor that kind of thing. In the end, it happened rarely enough and we noticed quickly enough that we could usually just fix it on the spot. So even when we got better at testing and that sort of cycle of things.
Paul: We had a problem or I guess solution with GitHub. So GitHub used to be super flaky around two, two and a half years ago, when they were still on Rackspace. And whenever something would go wrong with GitHub we would find out immediately. All of our, all the developments would start failing and so before they knew that there was a problem, we knew there was a problem.
And we would often like, declare on Twitter, oh we think GitHub’s having a bit of an issue and two minutes later their status would tweet us and then we would retweet their tweet.
Edith: So they were using you for their free testing.
Paul: Well, our customers at least.
Edith: No I mean you were acting as their tester and telling them that—
Paul: Well, I mean it was very, you know, automated on our but we didn’t have necessarily automated fixes at the start. It kind of happened every, you know, two or three months and they would swear this is the last time and—
Edith: It’s always the last time.
Paul: And in the end it happened like six or eight times and by that time we had built a thing that allowed, you know, certain fixes, but it wouldn’t be quite, you know, fully automated process that you would expect if it was happening all the time ’cause it always seemed like it was gonna be the last time.
Sam: And it’s probably always happening for a slightly different reason or in a slightly different way. It’s actually, it’s an interesting question to me in the subject of continuous delivery in general. People always talk about every time you commit you run your tests, every time you commit, you deploy.
But that’s actually only one of the kinds of events that you’re dealing with in a software life cycle, right, when something’s actually running. I mean, sure you’re changing the code but also the world’s changing around you. And I feel like you always end up needing a little bit of both—you need something that’s gonna trigger when you change it, but you also need sort of an eye on everything you depend on. And, of course, even figuring out what all those things are can be interesting.
Paul:
So I wrote a blog post about this on the Heavybit Blog, I think a while back, and it was about third-party APIs you know, how do you test third-party APIs. And the conclusion that I came to was that, so if you run the tests as part of your test suite, then if something breaks, your test suite will be broken, but also some things will just like randomly break in production.
And then of course you can’t deploy because your test suite is broken. So you’re in kind of the worst of both worlds. And so what I considered is, is that you need something which, you know, is just permanently monitoring. Like whatever API things you do constantly hits your personal accounts or your test accounts for those things, and then stub it out in your test suite.
And that way you kind of get that best of both worlds, your test suite doesn’t fall over and you get an actual monitoring event when the third-party service goes down in production.
Sam: I can tie this to an experience from LinkedIn, actually. So LinkedIn has the model where there’s a staging environment and a production environment. And the staging environment is—I don’t know if it’s technically called a staging environment because it’s not exactly production-like, but what they actually call it is early integration. Because it’s the environment in which teams integrate with other teams.
And so the idea is you deploy your stuff into EI, early integration, as soon as you can so that if any other team depends on you or vice versa, you can find out there before the thing hits prod. But what you’ve effectively got in EI is this constantly changing environment full of dependencies and you have exactly this problem and different teams which using different solutions to, well, let’s write some integration tests which actually hit the dependencies and then we’ll run them in our test suite when we deploy to EI or when in the build step which—
Paul: I can’t tell as you’re describing this whether this is a good thing or bad thing.
Edith: Yeah.
Sam: I think there wasn’t a clear conclusion, but my conclusion is that it doesn’t work for the same reason that you’re saying.
You need to know that if your test suite fails, it fails because of something you did. And then you need something else that can fail because of something someone else did.
But if you’re ever unsure which of things it is, then the signal is lost for both systems.
Be sure to listen to the full episode. While you’re there check out Heavybit’s library, home to great educational talks from other developer company founders and industry leaders.