DevOps.com

  • Latest
    • Articles
    • Features
    • Most Read
    • News
    • News Releases
  • Topics
    • AI
    • Continuous Delivery
    • Continuous Testing
    • Cloud
    • Culture
    • DevSecOps
    • Enterprise DevOps
    • Leadership Suite
    • DevOps Practice
    • ROELBOB
    • DevOps Toolbox
    • IT as Code
  • Videos/Podcasts
    • DevOps Chats
    • DevOps Unbound
  • Webinars
    • Upcoming
    • On-Demand Webinars
  • Library
  • Events
    • Upcoming Events
    • On-Demand Events
  • Sponsored Communities
    • AWS Community Hub
    • CloudBees
    • IT as Code
    • Rocket on DevOps.com
    • Traceable on DevOps.com
    • Quali on DevOps.com
  • Related Sites
    • Techstrong Group
    • Container Journal
    • Security Boulevard
    • Techstrong Research
    • DevOps Chat
    • DevOps Dozen
    • DevOps TV
    • Digital Anarchist
  • Media Kit
  • About
  • AI
  • Cloud
  • Continuous Delivery
  • Continuous Testing
  • DevSecOps
  • Leadership Suite
  • Practices
  • ROELBOB
  • Low-Code/No-Code
  • IT as Code
  • More
    • Application Performance Management/Monitoring
    • Culture
    • Enterprise DevOps

Home » Blogs » Why You Must Lead With AI

continuous testing AI

Why You Must Lead With AI

By: Alyssa Rochwerger on May 7, 2021 Leave a Comment

AI will soon be a necessary part of doing business. Every company will have an AI strategy in the same way that they have a social media strategy, branding strategy, talent strategy, etc.

Related Posts
  • Why You Must Lead With AI
  • Quality Is a Top Challenge for Data-Driven Projects
  • AI Delivering on the Business Analytics Promise
    Related Categories
  • AI
  • Blogs
  • Business of DevOps
  • Leadership Suite
    Related Topics
  • ai
  • automation
  • DevOps Leadership
  • organizational strategy
Show more
Show less

So if you want to stand out from the competition and gain an edge, you can’t just use AI; you must lead with AI.

DevOps Connect:DevSecOps @ RSAC 2022

What does that look like?

To lead with AI, you can’t simply set up a small innovation team to solve point problems. You must embed AI throughout the organization, such that every team is taking advantage of the technology and incorporating it into their operations.

The specifics will vary from company to company, but there are some general strategies that will help you begin leading with AI.

Be Persistent

Leading with AI doesn’t just happen in the blink of an eye. It’s going to take time and hard work, and it’s critical you stay persistent.

Amazon, a leader in machine learning technology applications, didn’t start out using advanced AI techniques on day one. Just like everyone else, they had to go on a journey filled with discovery, successes—and the occasional course correction. For example, in 2017, Amazon launched a TV ad that accidentally triggered Alexa devices in its customers’ homes to purchase an expensive dollhouse. Not ideal, and not the best advertisement for the convenience of their machine learning devices.

They stuck with progress, though, and learned from their mistakes. They were persistent, even though they started out behind the pack. Their focus on incremental progress meant that it only took five short years for Alexa to beat out Siri and Google Assistant in the smart home speaker market. Alexa may have had a slow start, but now she’s a very strong player in the market.

Persistence and determination are the ingredients that build leaders in AI—not perfection from the start.

Train Your Leaders to Look for AI Solutions

Before a business can lead with AI, it has to identify problems AI can solve. You can’t accomplish this by building an AI tiger team and turning them loose to hunt through each department for inefficiencies. That AI team wouldn’t have the necessary context, and all its time would be spent coming up to speed on the operations of the various departments.

Each division or department is familiar with its own operations and has the context to identify the most important problems. What they might lack is an understanding of AI and the types of problems it can solve. Giving them that training is the first step.

Organizations that do this successfully start with the belief that every department can use AI to solve some of its problems and work toward enabling their leaders to identify and solve those use cases. For example, a CFO, who is presumably good at what they do, probably doesn’t have any experience in AI—their expertise lies in finance. That CFO will need training to develop an AI-aware mindset, the ability to identify the places within the finance department where AI can solve problems.

Obviously, your leaders don’t need to understand everything about AI; they just need to know enough to be able to identify when AI is a good solution.

Create Cross-Functional Teams

When you think of AI, your mind might jump to data scientists, but there’s a lot at play in an AI model. It’s a marriage of technology and business, which means you need cross-functional teams to develop the best solutions. Because of this, the organization as a whole must become highly effective at multidisciplinary communication and collaboration.

At its simplest, this might involve rolling out something like Slack to improve communication across departments. Some companies might adopt Agile processes and workflows to encourage collaborative planning of requirements, or they might institute regular all-hands meetings to sync up business priorities all at once and provide transparency.

The details will be different for every organization, but every company will have a need for departments to collaborate more than before to identify common problems, prepare and share data, and develop related models. In some cases, this may be best served by restructuring the organization and reporting lines; in others, a department that expects an extensive adoption of AI—marketing, for example—may need to establish its own data science team.

This degree of change may seem overwhelming. It’s important, however, for organizations to avoid the short-term solution of creating an AI team that’s shared across the company, or that team will end up being the primary bottleneck blocking AI adoption.

Budget and Allocate Resources

Nothing happens in a company without a budget and allocated resources. Finding the budget to implement AI solutions—to buy off-the-shelf products, hire people with the needed skills, spend time and resources annotating data—is critical, but challenging, especially because a good portion of the investment in AI has to be made company-wide up front.

Leading with AI can necessitate reallocation of significant money and people, both of which are, in most cases, already budgeted out to normal operations. Deciding how much to reallocate and from where will impact the entire organization.

Cutting costs is always unpopular, but you must look at it as an investment. Take, for example, a company eager to invest in AI that runs a call center to capture support calls, return requests and complaints. There’s no magical pool of money sitting around to invest in AI to improve this call center.

Instead, the company will have to take money out of the yearly budget to spend on the AI initiative and just accept that the time to handle a call will go up for a period because fewer agents are deployed to receive those calls. The promise, of course, is that the investment in AI will lead to a chatbot that can divert 15% of those incoming calls, requiring fewer agents to handle calls and improving the call-handling time overall.

Clearly articulating the long-term gains of AI will make it easier to secure buy-in across the company, so that the needed resources will be allocated.

Leading With AI

Leading with AI is hard. It will take time and massive investment. It’s never easy to switch up the operation of huge chunks of a business, reorganize reporting structures and refocus priorities; it will almost certainly require killing some sacred cows.
Amazon, for example, spent years and a lot of investment to make the transition to leading with AI. Now, on the other side, they’ve maintained their status as a leader in their industry, with the infrastructure and culture that enables them to implement new AI solutions throughout their businesses as opportunities and problems arise.

With persistence, AI-aware leaders, cross-functional teams and the right budget and resources, you, too, can begin leading with AI, ensuring a future competitive advantage.


Co-author Wilson Pang is CTO at Appen.

Filed Under: AI, Blogs, Business of DevOps, Leadership Suite Tagged With: ai, automation, DevOps Leadership, organizational strategy

Sponsored Content
Featured eBook
DevOps: Mastering the Human Element

DevOps: Mastering the Human Element

While building constructive culture, engaging workers individually and helping staff avoid burnout have always been organizationally demanding, they are intensified by the continuous, always-on notion of DevOps.  When we think of work burnout, we often think of grueling workloads and deadline pressures. But it also has to do with mismatched ... Read More
« Empowering Developers Through Lean Code
The Basics of DevSecOps Adoption »

TechStrong TV – Live

Click full-screen to enable volume control
Watch latest episodes and shows

Upcoming Webinars

Continuous Deployment
Monday, July 11, 2022 - 1:00 pm EDT
Using External Tables to Store and Query Data on MinIO With SQL Server 2022
Tuesday, July 12, 2022 - 11:00 am EDT
Goldilocks and the 3 Levels of Cardinality: Getting it Just Right
Tuesday, July 12, 2022 - 1:00 pm EDT

Latest from DevOps.com

Rust in Linux 5.20 | Deepfake Hiring Fraud | IBM WFH ‘New Normal’
June 30, 2022 | Richi Jennings
Moving From Lift-and-Shift to Cloud-Native
June 30, 2022 | Alexander Gallagher
The Two Types of Code Vulnerabilities
June 30, 2022 | Casey Bisson
Common RDS Misconfigurations DevSecOps Teams Should Know
June 29, 2022 | Gad Rosenthal
Quick! Define DevSecOps: Let’s Call it Development Security
June 29, 2022 | Don Macvittie

Get The Top Stories of the Week

  • View DevOps.com Privacy Policy
  • This field is for validation purposes and should be left unchanged.

Download Free eBook

The 101 of Continuous Software Delivery
New call-to-action

Most Read on DevOps.com

What Is User Acceptance Testing and Why Is it so Important?
June 27, 2022 | Ron Stefanski
Chip-to-Cloud IoT: A Step Toward Web3
June 28, 2022 | Nahla Davies
Rust in Linux 5.20 | Deepfake Hiring Fraud | IBM WFH ‘New No...
June 30, 2022 | Richi Jennings
DevOps Connect: DevSecOps — Building a Modern Cybersecurity ...
June 27, 2022 | Veronica Haggar
The Two Types of Code Vulnerabilities
June 30, 2022 | Casey Bisson

On-Demand Webinars

DevOps.com Webinar ReplaysDevOps.com Webinar Replays
  • Home
  • About DevOps.com
  • Meet our Authors
  • Write for DevOps.com
  • Media Kit
  • Sponsor Info
  • Copyright
  • TOS
  • Privacy Policy

Powered by Techstrong Group, Inc.

© 2022 ·Techstrong Group, Inc.All rights reserved.